

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Some Recent Results in the Separation Of Metal Chlorides by Solvent Extraction

Z. Sheng^a; M. J. Murtha^a; G. Burnet^a

^a AMES Laboratory, U.S.D.O.E. Department of Chemical Engineering, Iowa State University, Ames, Iowa

To cite this Article Sheng, Z. , Murtha, M. J. and Burnet, G.(1983) 'Some Recent Results in the Separation Of Metal Chlorides by Solvent Extraction', *Separation Science and Technology*, 18: 14, 1647 — 1665

To link to this Article: DOI: 10.1080/01496398308056119

URL: <http://dx.doi.org/10.1080/01496398308056119>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Some Recent Results in the Separation of Metal Chlorides by Solvent Extraction

Z. SHENG, M. J. MURTHA, and G. BURNET

AMES LABORATORY, U.S.D.O.E.
DEPARTMENT OF CHEMICAL ENGINEERING
IOWA STATE UNIVERSITY
AMES, IOWA 50011

ABSTRACT

Solvent extraction is used to selectively separate an aqueous mixture of metal chlorides (Fe, Al and Ti) that is the product from the high-temperature chlorination of fly ash by the HiChlor process. Tertiary amines dissolved in xylene or kerosine are used to separate the Fe from the Al and Ti. Prior to extraction, the organic solution is contacted with HCl to convert the amine to the chloride salt. Data on the effects of organic-to-aqueous ratio, Fe, Al and Ti loadings, and HCl concentration in the aqueous phase are reported. Iron is stripped from the loaded organic phase using dilute HCl. The raffinate is subjected to sparge crystallization with HCl to recover $\text{AlCl}_3 \cdot 6\text{H}_2\text{O}$.

The recovery of Ti from the aqueous phase after Fe removal requires the use of tributyl phosphate (TBP) in kerosine for the organic phase, and of higher acid concentrations. Decanol is used as a modifier to prevent formation of a third phase.

INTRODUCTION

Recovery of resource materials from coal solid wastes, principally fly ash from the combustion of pulverized coal, is receiving considerable attention today. Work is directed toward recovery of minerals from the ash and discovery of uses for the residues. Pro-

cessing usually calls for some form of chemical attack to break down the vitreous, fused ash particles. Recovery of metal compounds from the product stream often involves solvent extraction and related separation methods.

The major constituents in coal fly ashes from bituminous, subbituminous, and lignite coals (1) are shown in Figure 1. Of particular interest is the uniform alumina content of approximately 20 weight percent in the different ashes.

The processing of fly ash to recover minerals could provide an alternative to disposal, thus preventing additional environmental degradation. The ash would also be an indigenous source for some minerals now derived primarily from imported ores. The coal ash production projected for 1985 is 100 million tons, a figure that is expected to double by the year 2000 (2).

Acid digestion (3,4) and carbochlorination (5,6) are two processing methods that result in a product stream that consists primarily of metal chlorides. An example of the latter method is the Ames Laboratory HiChlor process. The product stream from a carbochlorination process will contain a higher concentration of Al(III) and will be less complex, being composed mainly of $AlCl_3$ and $FeCl_3$. The primary purpose of the present investigation is to examine the separation and recovery of metal chlorides from the HiChlor process product stream by solvent extraction coupled with sparge crystallization.

THE HICHLOR PROCESS

As shown in Figure 1, the bituminous coal fly ashes are high in Fe and low in Ca. Part of the Fe in the ash can be separated magnetically as an iron-rich fraction. The nonmagnetic fraction is amenable to chlorination for metal recovery. The low Ca content reduces the amount of Cl_2 consumed in the production of unwanted products.

In the HiChlor process (Figure 2) the nonmagnetic fraction is chlorinated in the presence of carbon or another reductant at high

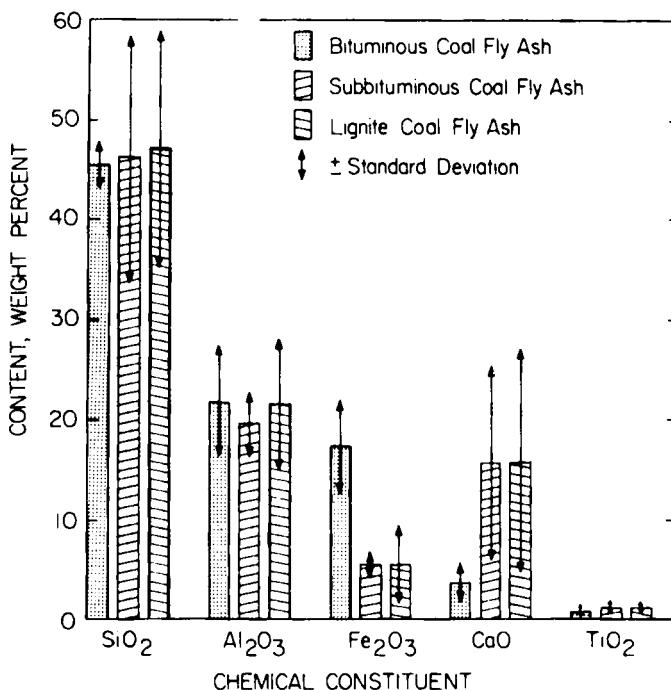


FIGURE 1. Chemical Compositions of U. S. Power Station Fly Ashes

temperature (800–900°C) to produce volatile metal chlorides. These chlorination products are then condensed and separated, while unreacted Cl₂ and SiCl₄ are recycled to the reactor. The recycle of SiCl₄ to the reactor suppresses the formation of additional SiCl₄.

The gaseous product consists of the chlorides of Si, Fe, Al, Ti, Na, K, Mg, and Ca, plus CO₂, CO, and unreacted Cl₂. The key recovery step is the separation of a purified aluminum chloride that can be converted to specification grade aluminum oxide for aluminum metal production. Iron and silicon chlorides are the principal impurities. The amount of TiCl₄ present is relatively small but must be separated; most fly ashes contain only about one weight percent TiO₂. The process shown in Figure 2 calls for a combination of anhydrous and aqueous recovery and separation steps.

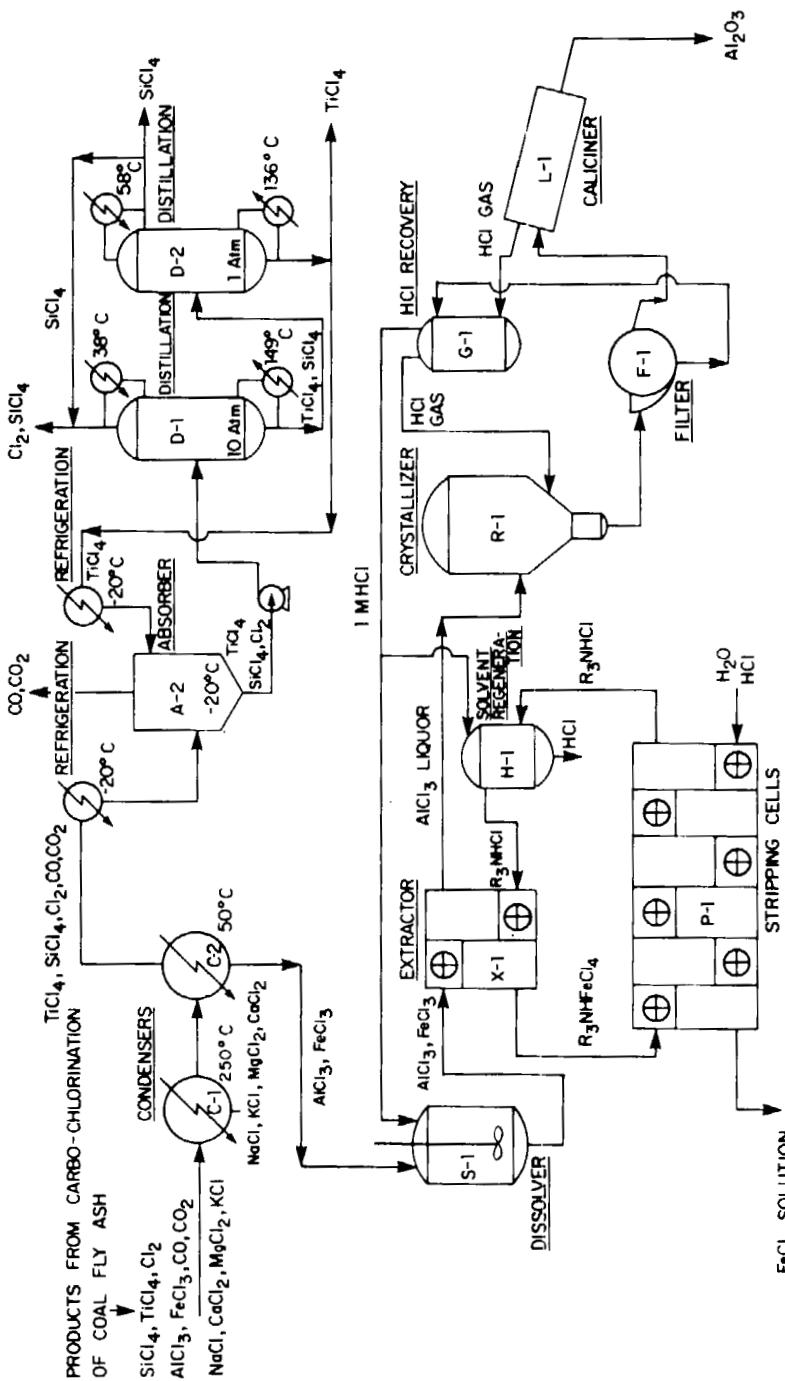


FIGURE 2. Schematic Flowsheet for the Recovery and Separation of HiChlor Products

Approximate composition data for the chlorination product gases with melting point and boiling point data for the constituents are given in Table 1. The melting and boiling points are such that it is possible to separate the low-boiling components of this mixture from the high-boiling components by fractional condensation. The alkali and alkaline earth chlorides (such as KCl , $NaCl$, $MgCl_2$, $CaCl_2$) can be separated from the product stream by cooling at atmospheric pressure to about $250^\circ C$ (C-1, Figure 2). The remaining constituents undergo a second stage condensation (C-2) at about $50^\circ C$ to remove more than 99.9% of the $AlCl_3$ and the $FeCl_3$ from the stream. Condensation of the $SiCl_4$ and $TiCl_4$ does not occur because the partial pressures are less than the vapor

TABLE 1

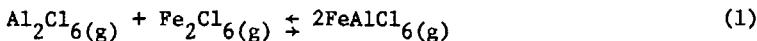
Composition and Properties of Predominant Fly Ash Chlorination Product Vapors (at 1 atmosphere)

Substance	Mole percent ^a	Melting point (Celsius)	Boiling point (Celsius)
CO	39.8	-205.06	-191.47
CO_2	19.9	- 56.6 ^b	- 78.5 ^e
Cl_2	16.1	-100.98	- 34.6
$SiCl_4$	12.2	- 70 ^c	57.57
Al_2Cl_6	9.2	190 ^d	180.2 ^e
Fe_2Cl_6	2.3	306	315 ^f
$TiCl_4$	0.6	- 25	136.4

^aComputed from total oxide removed vs. time data, and from carbon oxides and Cl_2 monitoring at 1 hour, 850 degrees (6).

^bAt 5.2 atmospheres.

^cTriple point.


^dAt 2.5 atmospheres.

^eSublimes.

^fDecomposes to $FeCl_2$ and Cl_2 .

pressures at 50°C due primarily to the large fraction of carbon oxides and chlorine in the vapor.

The principal difficulty in separating AlCl_4 and FeCl_3 mixtures by anhydrous means is the formation of a volatile mixed-metal complex. Both AlCl_3 and FeCl_3 are monomeric in the solid state but, when vaporized, form a dimer analog:

The introduction of FeAlCl_6 into the AlCl_3 - FeCl_3 system causes the appearance of an apparent minimum subliming azeotrope (7). Therefore, to recover a metallurgical grade Al_2O_3 product, efforts have been directed toward development of an aqueous separation and recovery scheme.

In the aqueous method, the metal chlorides (mainly AlCl_3 and FeCl_3) recovered from the second condenser (C-2) are dissolved in dilute aqueous HCl. The solution may be filtered to remove any undissolved solid such as SiO_2 that may form during the dissolution. Alamine 336 in kerosine is then used to extract Fe(III) ion from the solution. Aluminum is precipitated from the raffinate as $\text{AlCl}_3 \cdot 6\text{H}_2\text{O}$ and the Ti present is then extracted using TBP solvent.

AQUEOUS SEPARATION OF Fe(III) FROM Al(III)

Feed Solution

A typical mixed chloride solution after dissolution contains about 2M AlCl_3 , 0.45M FeCl_3 , 1M HCl, 8.3-8.5M total Cl^- and a trace of Ti(IV). A HCl concentration of at least 1M is required for extraction of the Fe(III) and to prevent any Ti(IV) present from hydrolyzing.

The Choice of Extractant and Diluent

Trivalent Fe in the chloride system is very easily extracted. Extraction of Fe(III) from HCl can be accomplished with various

solvents with negligible AlCl_3 removal. The solvents which are widely used in practice are HDEHP, TBP, and high molecular weight amines.

Although Fe(III) was efficiently extracted from an HCl solution with virtually no Al(III) extraction by HDEHP, the distribution coefficient of Fe(III) was strongly dependent on the solution acidity. The E_a^0 of Fe(III) was more than 10^2 when the HCl concentration in the aqueous phase was 0.01M to 0.1M. On the other hand, it was difficult to strip the Fe(III) from the loaded organic HDEHP with either water or dilute acid.

The use of amines for the extraction of Fe(III) has been widely investigated. Fe(III) can be extracted from H_2SO_4 by primary amines (8) but, for the extraction from HNO_3 or HCl solutions, secondary or tertiary amines give improved distribution coefficients (9, 10, 11, 12). It has been reported that the distribution coefficient is more than 10^4 for Fe(III) from chloride solution with Alamine 336 (12).

Tributyl phosphate (TBP) is also an excellent extractant for Fe(III) from HCl solutions of about 2M. For both TBP and Alamine 336, AlCl_3 is not extracted and will enhance the extraction of Fe(III) through its action as a salting-out agent (12).

Because tertiary amines such as Alamine 336 have the advantage of higher Fe(III) distribution coefficients and less dependency on acid concentration, Alamine 336 (General Mills Chemicals, Inc.) was used for this research. The organic solvent was contacted with 1M HCl to convert the amine to the chloride salt form prior to the extraction tests.

Both xylene and kerosine were tested as a diluent for Alamine 336. It is convenient to use xylene in the chloride system because xylene does not cause a third phase. Kerosine is often used, however, because of lower cost and flammability but, in the extraction of Fe(III), the organic phase will separate into two phases if the Fe(III) concentration is very high. This phase transition can be prevented by adding a modifier such as decanol

to the kerosine. Tests to determine the amount of modifier required revealed that the addition of 9 percent (v/v) of 1-decanol can eliminate the third phase for a mixture of 20 percent Alamine 336 in kerosine and that 10 percent (v/v) 1-decanol is satisfactory for 30 percent (v/v) Almine 336 in kerosine. The extraction isotherms (Figure 3) indicate that there is almost no difference in performance when xylene or kerosine plus decanol is used as the diluent. However, the stripping data for Fe(III) (Figure 4) show that the use of kerosine plus decanol gives significantly improved Fe(III) stripping from the loaded Alamine 336 with 0.01M-0.03M HCl. Improved stripping efficiency is important because more contact stages are needed for stripping than for extraction.

Effect of Acidity and Cl^- Concentration on Fe(III) Extraction

Fe(III) extraction by Alamine 336 as a function of total Cl^- , acidity and predominant cation are shown in Figure 5. The added

FIGURE 3. Isotherms for the Extraction of Fe(III)

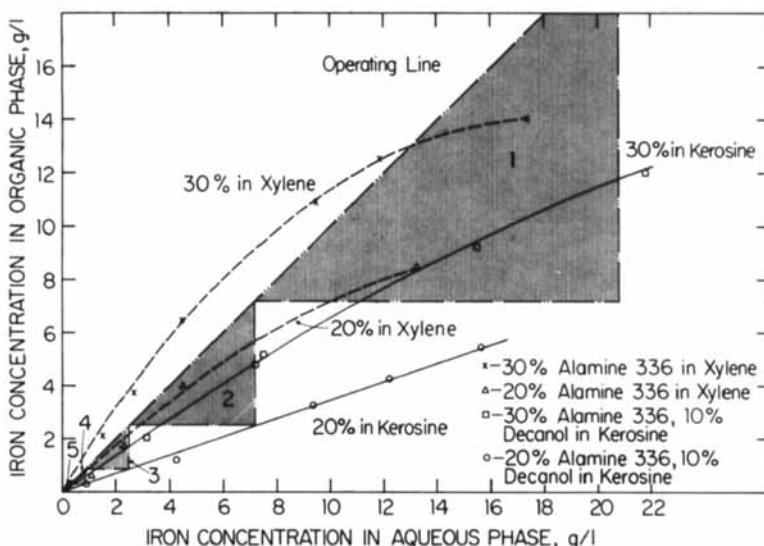


FIGURE 4. Isotherms (23°C) for the Stripping of Fe(III) by 0.01-0.03M HCl

total Cl^- was defined as the sum of the concentrations of Cl^- , not including that of the FeCl_3 . It is obvious from this plot that Fe(III) extraction improves markedly as the Cl^- concentration increases. These data show that the distribution coefficient of Fe(III) is highly dependent on the added Cl^- concentration in the aqueous phase, and less dependent on whether H^+ or Al^{3+} is the predominant cation. The presence of AlCl_3 in solution is beneficial for the Fe(III) extraction.

Fe(III) Extraction Isotherms

Isotherms for the extraction of Fe(III) from chloride solution by different concentrations of Alamine 336 in kerosine-decanol and xylene diluents are shown in Figure 3. The extraction equilibrium of FeCl_3 with Alamine 336 is attained rapidly. One minute of shaking brings the system near equilibrium and 3 minutes is sufficient to reach equilibrium.

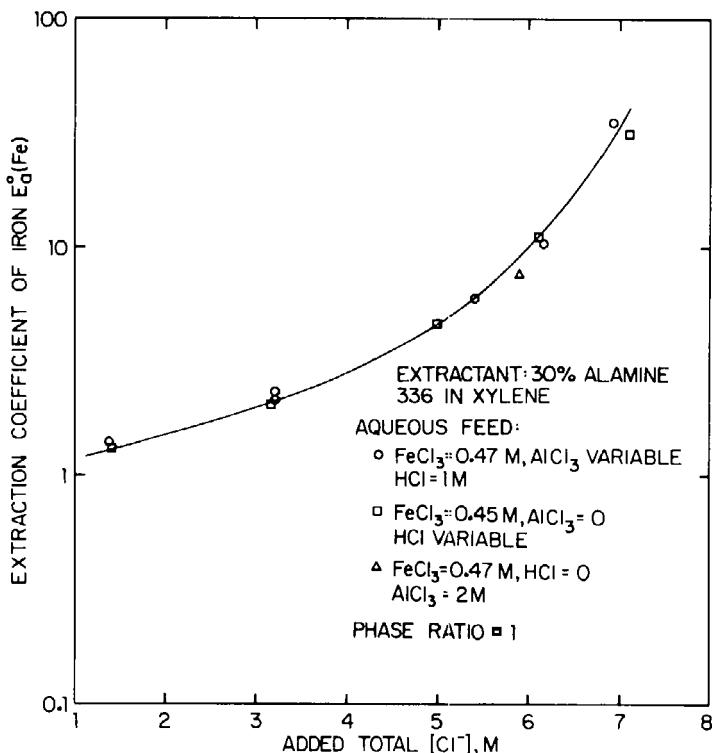
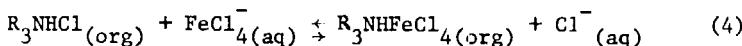
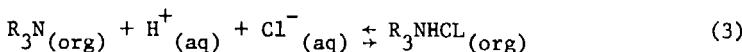
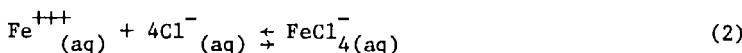





FIGURE 5. Effect of Chloride Ion Concentration on the E_a^o of Fe(III)

It is generally agreed that the mechanism of FeCl_3 extraction using an amine is one of anion exchange (13);

When amine solutions are saturated with Fe(III), the molar ratio

$(R_3N):(Fe) = 1:1$ (Equation 4). The data in Figure 3 substantiated this. At the saturated Fe(III) concentration for the organic phase, the molar ratio of amine to Fe(III) ranged from 1:1 to 1:1.05 for an amine average mol. wt. of 392 and sp. g. of 0.81.

Effect of Feed Composition on Fe(III) Extraction

A mole ratio of Al to Fe of about 4.5:1 results from the chlorination of a low-iron content fly ash. The isotherms (23°C) for the extraction of Fe(III) by 20 percent Alamine 336 in kerosine plus decanol shown in Figure 6 are for the range of AlCl_3 concentration expected in the aqueous feed. An increase in the concentration of AlCl_3 improves the Fe(III) extraction. It is, therefore, desirable to have the feed solution near the solubility limit of AlCl_3 , not only to minimize the volume of treated solution but also to improve the extraction of Fe(III).

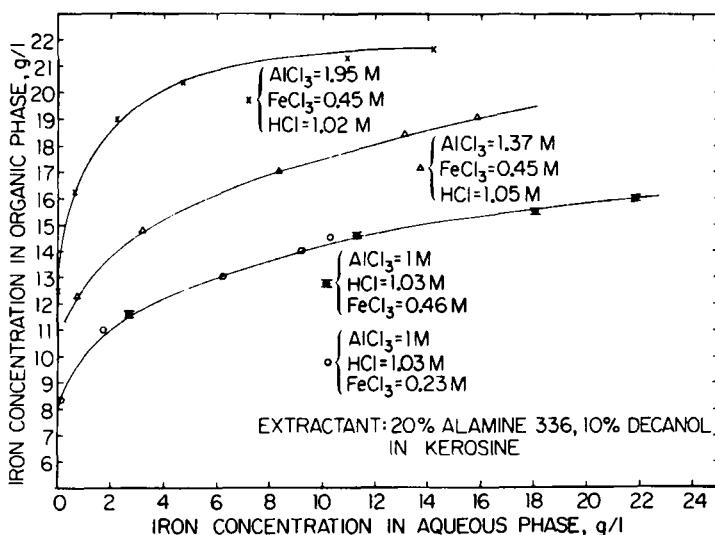


FIGURE 6. Effect of the Feed Composition on the Extraction of Fe(III). Compositions shown are for the aqueous feeds investigated.

Stripping of Fe(III) from the Organic Solution

Fe(III) can be stripped from Alamine 336 using dilute acid, the use of which also ensures that the Fe(III) will not hydrolyze in the aqueous phase. Figure 4 is the equilibrium diagram for stripping iron-loaded Alamine 336 with 0.01-0.03M HCl. These data show the effect of both Alamine 336 concentration and the type of diluent on Fe(III) distribution. Although Fe(III) extraction is proportional to the amine concentration (Figure 3), Fe(III) stripping becomes more difficult as the amine concentration increases and the driving force for the transfer of Fe(III) decreases. The choice of 20 percent Alamine 336 in kerosine plus 10 percent decanol proved to be a good compromise. For an organic-aqueous phase ratio of 1:1 (Figure 4), six theoretical stages are required to remove the Fe(III) from the organic phase. Even more stages would be required for higher Alamine 336 concentrations.

Simulated Countercurrent Extraction

Because solvent extraction processes are usually countercurrent operations, a series of batch extractions were made to simulate a continuous countercurrent two-stage process. A 1M aqueous HCl feed stream containing 25.26 g/l Fe(III) and 53.56 g/l Al(III), and an organic phase consisting of 20 percent (v/v) Alamine 336 in kerosine plus 10 percent decanol were used. To meet Fe specifications (14) for the recovered Al_2O_3 product, the Fe concentration of the raffinate had to be reduced to 10 mg/l of Fe(III). On the assumption that 90-95 percent of the Alamine 336 would complex with Fe(III), an organic-aqueous ratio of 1.2:1 was required.

Equilibrium calculations indicated that only two theoretical stages would be required for this separation. The data collected to verify this are shown in Figure 7. With two stages of extraction, the concentration of Fe(III) was reduced to 1.05 mg/l, with no detectable loss of Al. The reported change

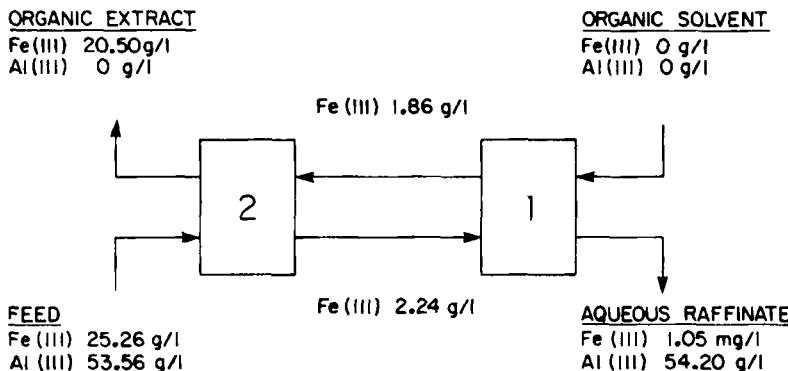


FIGURE 7. Schematic Flowsheet for FeCl_3 Extraction by Alamine 336

in Al(III) concentration in the aqueous phases was due primarily to a reduction in volume.

RECOVERY OF ALUMINA

The solubility of AlCl_3 in aqueous solution decreases with increasing concentration of HCl. This behavior has been the subject of numerous investigations and patents (15, 16). Thus, when HCl is added, Al can be precipitated in the form of $\text{AlCl}_3 \cdot 6\text{H}_2\text{O}$ which can be subsequently calcined to Al_2O_3 . The precipitation reaction is very selective and the impurities in the precipitate come only from the entrainment of mother liquor. The precipitate is highly crystalline and can be readily washed with concentrated HCl to yield a pure product. As part of this work, the solubility of $\text{AlCl}_3 \cdot 6\text{H}_2\text{O}$ in the mother liquor was determined (Figure 8) and found to agree with previously reported results (15).

The raffinate from the FeCl_3 solvent extraction step contained 54.20 g/l of Al and 1.05 mg/l of Fe, and was brought in contact with anhydrous HCl in a sparge crystallizer. Sparging was continued with stirring until a desired HCl concentration (9-11M) was reached and the crystal crop of $\text{AlCl}_3 \cdot 6\text{H}_2\text{O}$ had formed.

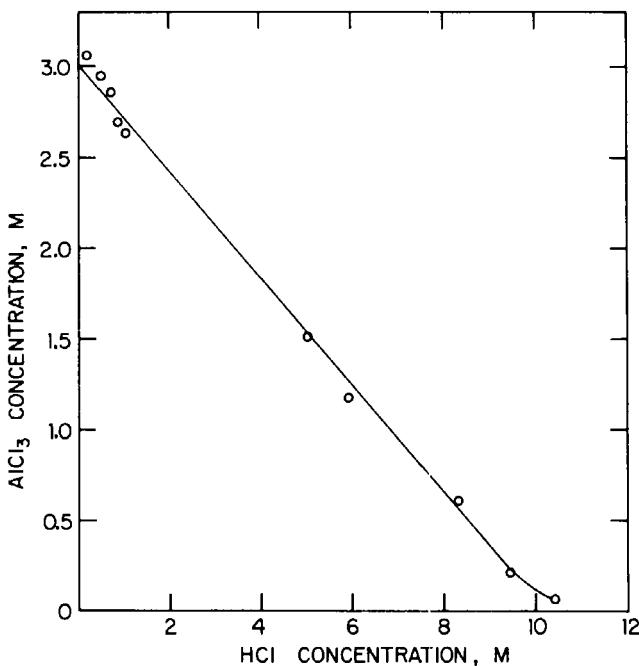


FIGURE 8. Solubility of Al in HCl Solution

After letting the crystals age, the precipitate was filtered and twice washed with 12M HCl. The crystals were then dried and calcined at 700°C for 2 hours to produce Al_2O_3 . The yield of alumina, a function of the HCl concentration in the mother liquor, was 90-96%. The residual AlCl_3 was returned to the dissolution step. The HCl evolved during calcination would be quantitatively recovered using available technology (17, 18).

RECOVERY OF Ti(IV)

Depending upon the product recovery scheme used, TiCl_4 could occur in the aqueous mixed chloride feed, being condensed with the FeCl_3 and AlCl_3 . In this work, Ti(IV) remained in the aqueous phase after Fe extraction and $\text{AlCl}_3 \cdot 6\text{H}_2\text{O}$ crystallization. The combined filtrate and washings from the $\text{AlCl}_3 \cdot 6\text{H}_2\text{O}$ crystalli-

zation contained Ti(IV), residual Al(III), and traces of Fe in about 10M HCl.

It was found that TBP (Eastman Chemical Company) was suitable to extract Ti(IV) from the above solution when the HCl concentration was kept high. A TBP concentration of 30 percent was used and both xylene and kerosine were tested as diluents. Because of the large volume change that occurs on equilibration of TBP with HCl in solution, the extractions were carried out using TBP which had been pre-equilibrated with HCl.

Ti(IV) extraction from HCl solution with TBP is strongly dependent upon the HCl concentration in the aqueous phase (19, 20, 21). This is confirmed by the data shown in Figure 9. When kerosine was used as the diluent, three phases again formed at HCl concentrations greater than 7M, while with xylene this was not a problem. However, for the reasons discussed previously, it is desirable to use kerosine as the diluent. As was the case for the Fe(III) extraction, 8 percent (v/v) of decanol modifier was used for the 30 percent (v/v) TBP in kerosine to prevent the

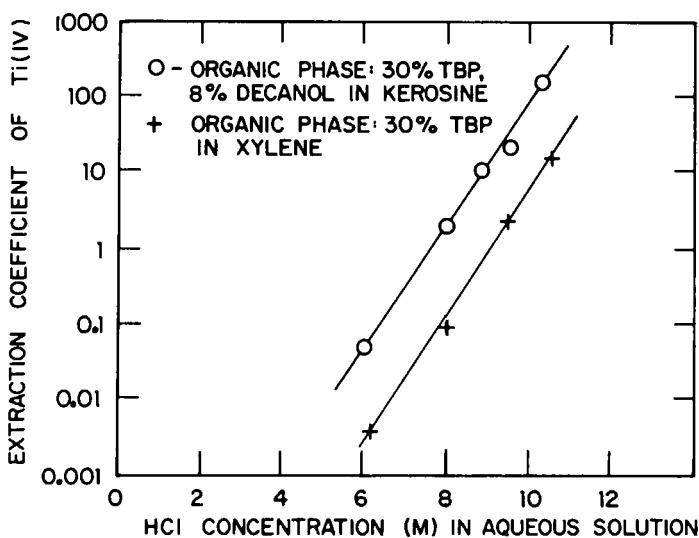
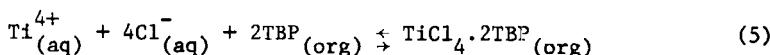



FIGURE 9. The Effect of HCl Concentration on Ti(IV) Extraction

formation of the third phase. The modifier also resulted in improved Ti(IV) extraction as is shown in Figure 9. For HCl concentrations in the feed lower than 6M there was virtually no extraction of Ti(IV) but when the HCl concentration was 9M or greater, the distribution coefficients for Ti(IV) were satisfactory. Ti(IV) is easily stripped from the loaded organic phase with 1M HCl solution, the 1M acidity being required to prevent the $TiCl_4$ from hydrolyzing.

The extraction of Ti(IV) from HCl has not been well studied according to the literature. The formation of a complex, as shown in the following reaction, has been suggested (19, 20, 22):

It thus appeared that Cl^- would play an important role in the extraction of Ti(IV) so an effort was made to determine the salting-out effect of $AlCl_3$.

The effect of total Cl^- concentration on Ti(IV) extraction by TBP is shown by the data in Table 2. The addition of $AlCl_3$ to the aqueous phase increases the distribution coefficient of Ti(IV). However, the distribution coefficient is not sufficiently high for extraction of Ti(IV) from the aqueous solution until the total Cl^- concentration is at least 8.5M. The decrease in solubility of $AlCl_3 \cdot 6H_2O$ with increasing HCl concentration (Figure 8) limits the use of $AlCl_3$ as a salting-out agent. Therefore, to obtain a high distribution coefficient for Ti(IV) extraction, it is best to increase the HCl concentration in the initial solution. The introduction of other chloride-bearing agents could contaminate the final products. The TBP solvent gave suitable extractions in the presence of the HCl already in the liquor from the sparge crystallization.

CONCLUSIONS

A process of anhydrous condensation followed by aqueous separation can be used to recover and separate Al, Fe, and Ti from

TABLE 2

Effect of Total Chloride Ion Concentration on Ti(IV) Extraction^a

Initial HCl (M)	Added AlCl_3 (M)	Total Cl^- (M)	$E(\text{Ti}^{+4})$
3.88	0	4.26	-
	0.64	6.06	0.02
	1.10	7.56	0.4
	1.40	8.27	1
6.23	0	6.60	0.05
	0.98	9.54	6.5
8.05	0	8.45	1.5
	0.49	9.92	10.6
9.27	0	9.65	9.5
	0.12	10.02	16
9.76	0	10.14	21

^aAqueous: 0.09M TiCl_4 + AlCl_3 + HCl. Organic: 30% (v/v) TBP, 8% decanol in kerosine. Temperature: 23°C.

the product stream that results from the high-temperature chlorination of fly ash by the HiChlor process. The Fe can be separated effectively from the Al and Ti by Alamine 336 extraction in a chloride system. Aluminum can be recovered from the raffinate by sparge crystallization as $\text{AlCl}_3 \cdot 6\text{H}_2\text{O}$, which can then be calcined to obtain metallurgical grade Al_2O_3 . Titanium can be recovered from the aqueous phase after Fe removal using TBP extraction at the high HCl concentration already present in the liquor from the sparge-crystallization. The process has been demonstrated on a laboratory scale.

ACKNOWLEDGMENT

This research was supported by the U.S. Department of Energy, Deputy Assistant Secretary for Coal Utilization, Office of

Advanced Conversion and Gasification, under Contract No. W-7405-Eng-82 with Iowa State University.

REFERENCES

1. N. K. Roy, M. J. Murtha and G. Burnet, in Ind. Applications of Magnetic Separations, IEEE Pub. No. 78CH1447-2MAG, 1979, p.32.
2. Coal Age, 40, February, 1983.
3. J. A. Eisele and D. J. Bauer, Evaluation of Technology for the Recovery of Metallurgical-grade Alumina from Coal Ash, RI 8791, U. S. Bureau of Mines, 1979.
4. T. M. Gilliam and R.M. Cannon, in Proceedings Sixth International Ash Utilization Symposium, Reno, Nevada, March, 1982, 2, p. 22.
5. M. J. Murtha and G. Burnet, Proceedings of the Iowa Academy of Science, 83, 125, 1976.
6. D. J. Adelman and G. Burnet, Proceedings of the Iowa Academy of Science, 87, 129, 1980.
7. G. Burnet, J. W. Dunker, and M. J. Murtha, DOE Fossil Energy Report IS-4803, UC-90, Ames Laboratory, May, 1982.
8. F. G. Seeley, W. J. McDowell, L. K. Felker, A. D. Kelmers, and B. Z. Egan, Hydrometallurgy, 6, 277, 1981.
9. P. T. Brooks and G. M. Potter, Electrochemical Recovery of High-Purity Nickel and Cobalt from Crude Nickel and Ferro-nickel, RI 7402, U. S. Bureau of Mines, 1970.
10. M. L. Good and S. E. Bryan, J. Am. Chem. Soc., 82, 5636, 1960.
11. F. G. Seeley and D. J. Crouse, J. Chem. and Engr. Data, 11, 424, 1966.
12. J. A. Eisele, L. E. Schultze, D. J. Berinati, and D. J. Bauer, Amine Extraction of Iron from Aluminum Chloride Leach Liquors, RI 8188, U. S. Bureau of Mines, 1976.
13. V. S. Shmidt, Amine Extraction, translated from Russian by J. Schmorak, Israel Program for Scientific Translations Ltd., Jerusalem, Israel, 1971.

14. S. J. Sansonetti, in Chemical and Process Technology Encyclopedia, (D. M. Considine, ed.), McGraw-Hill Book Co., New York, 1974, p. 155.
15. R. R. Brown, G. E. Dant, R. V. Mrazek, and N. A. Gokcen, Solubility and Activity of Aluminum Chloride in Aqueous Hydrochloric Acid Solutions, RI 8379, U. S. Bureau of Mines, 1979.
16. W. F. Linke, Solubilities of Inorganic and Metal-Organic Compounds, D. Van Nostrand Company, Princeton, New Jersey, 1958, Fourth Edition, Vol. 1, p. 164.
17. J. W. Burtch, South East Asia Iron and Steel Institute Quarterly, 2 (4), 52, 1973.
18. D. R. George, K. E. Tame, J. R. Crane, and K. B. Higbie, Journal of Metals, 20 (9), 59, 1968.
19. V. N. Startsev, E. I. Krylov, and Yn. A. Kozmin, Russ. J. of Inorg. Chem., 10, 1285, 1965.
20. V. N. Startsev, Yu. I. Sannikov, G. N. Benyash, and E. I. Krylov, Russ. J. of Inorg. Chem., 13, 586, 1968.
21. Yu. G. Sevastyanov, B. Z. Iofa, A. N. Nesmeyanov, and V. G. Vinogradova, Radiokhimiya, 12, 33, 1970.
22. G. Roland and B. Gilbert, Analytica Chimica Acta, 60, 57, 1972.